

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	CE CONTRACTOR OF THE CONTRACTO
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: ORC601S	COURSE NAME: ORGANIC CHEMISTRY 1
SESSION: JUNE 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

1	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	MS. NATALIA SHAKELA
MODERATOR:	PROF. HABAUKA KWAAMBWA

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly
4.	All written work must be done in blue or black ink and sketches can
	be done in pencil
5.	No books, notes and other additional aids are allowed

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

¹H NMR and IR Spectral Data, pK_a Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 14 PAGES

(Including this front page, pKa Chart and Periodic Table)

QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions in this section. Each question carries
 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1.1 Arrange the following in order of increasing basicity?

I. OH

II. C1-

III. H₂O

IV. NH₃

A. II, III, IV, I

B. III, I, IV, II

C. IV, I, II, III

D. III, IV, I, II

1.2 List the following compounds in the order of increasing acidity.

Α. ^

B. JOL

C. CH₂OH

D. F. OH

A. A; B; C; D

B. A; C; B; D

C. A; C; D; B

D. D; C; A; B

1.3 Does the equilibrium of this reaction lie to the left or right?

$$H_3C-CH_2-C\equiv CH$$
 + H_3C $\stackrel{\ddot{N}}{\longrightarrow}$ CH_3 $\stackrel{H_3}{\longrightarrow}$ $H_3C-CH_2-C\equiv C$ + H_3C $\stackrel{\ddot{N}}{\longrightarrow}$ CH_3

A. Right

B. Left

C. It cannot be determined

D. The forward and reverse reactions are equally favoured

1.4 Which are acid-base reactions according to Bronsted-Lowry Theory?

I.
$$(CH_3)_3COH + H_2SO_4 \longrightarrow (CH_3)_3C \oplus + H_2O + {}^{\Theta}\!HSO_4$$

II. $Br_2 + FeBr_3 \longrightarrow FeBr_4^{\Theta} + Br_7^{\Theta}$

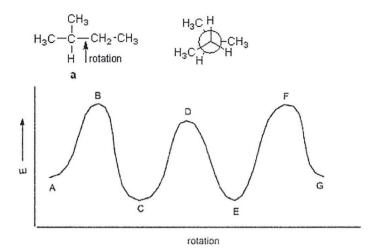
III. $CH_3NH_2 + BF_3 \longrightarrow CH_3NH_2BF_3^{\Theta}$

IV. $CH_3NH_2 + HC1 \longrightarrow CH_3NH_3Cl_{\Theta}^{\Theta}$

- A. I
- B. I; III; IV
- C. I; II, III
- D. I; IV
- 1.5 Consider the three isomeric alkanes *n*-hexane, 2, 3-dimethylbutane, and 2-methylpentane. Which of the following correctly lists these compounds in order of increasing boiling point?
 - A. 2, 3-dimethylbutane < 2-methylpentane < *n*-hexane
 - B. 2-methylpentane < *n*-hexane < 2, 3-dimethylbutane
 - C. 2-methylpentane < 2, 3-dimethylbutane < *n*-hexane
 - D. *n*-hexane < 2-methylpentane < 2, 3-dimethylbutane
- 1.6 When a small amount of hexanoic acid $[CH_3(CH_2)_4CO_2H$, pK_a~4.8] is added to a separating funnel which contains the organic solvent diethyl ether and water with a pH of 2.0, it is found mainly in the _____ phase as _____.
- A. ether; CH₃(CH₂)₄CO₂-
- B. water; CH₃(CH₂)₄CO₂-
- C. ether; CH₃(CH₂)₄CO₂H
- D. water; CH₃(CH₂)₄CO₂H
- 1.7 Among the butane conformers, which occur(s) at energy minima on a graph of potential energy versus dihedral angle?
 - A. gauche only
 - B. eclipsed and totally eclipsed
 - C. gauche and anti
 - D. eclipsed only

1.8 How many stereogenic centres does the addictive drug heroin have?

- A. 4
- B. 5
- C. 6
- D. 7


1.9 In question 1.8 above, how many stereoisomers are possible for the drug heroin?

- A. 8
- B. 16
- C. 32
- D. 64

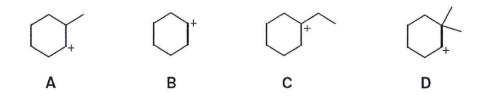
1.10 Designate the following compound as R or S configuration.

- A. R
- B. S

1.11 The graph below shows the energy changes that occur during rotation the C-C bond indicated in compound a. Which letter(s) on the graph correspond(s) to the Newman Projection?

- A. A and G
- B. B and F
- C. C and E
- D. D
- 1.12 Select the list that places the substituents from highest priority to lowest priority when assigning a stereogenic centre.
- $A) \quad -CH_2Br; -Br; -Cl; -CH_3 \qquad \qquad C) \quad -OCH_3; --OH; -CH_3; -H$
- B)
- - A. A
 - B. B
 - C. C
 - D. D
- 1.13 A decrease in ______result in an increase in the rate of a chemical reaction?
 - A. Energy of activation
 - B. Temperature
 - C. Concentration
 - D. Collision frequency

1.14 Give the IUPAC name of the following compound	C name of the following compound	me of the	ne IUPAC	Give the	1.14
--	----------------------------------	-----------	----------	----------	------

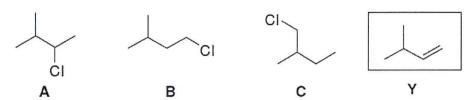

$$CH_3C \equiv CCH_2C(CH_3)_3$$

- A. 4,4-dimethyl-2-hexyne
- B. 5,5-dimethyl-2-hexyne
- C. 5,5-dimethyl-3-hexyne
- D. None of the above
- 1.15 Which of the following reaction conditions would result in the anti-Markovnikov addition to the alkene?
 - A) H_2O/H^+

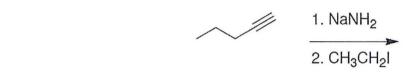
- B) HBr C) HCl D) [1] BH₃; [2] H₂O₂/OH⁻
- A. A
- B. B
- C. C
- D. D
- 1.16 Markovnikov addition of HBr to 1-propene involves:
 - A. Initial attack of bromide ion
 - B. Initial attack of bromine radical
 - C. Formation of a secondary carbocation
 - D. Formation of a primary carbocation
- 1.17 Assuming no other changes, what is the effect of doubling both the alkyl halide and the nucleophile concentrations in a S_N2 reaction?
 - A. no change
 - B. doubles the rate
 - C. triples the rate
 - D. quadruples the rate

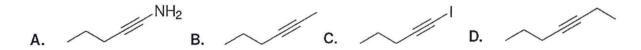
	Given the solvent f		_		eaction, wl	nat woul	d the effect be of o	chang	ing the
C	CH ₃ (CH ₂	₂) ₅ Br	+	NaOH)	- C	CH ₃ (CH ₂) ₅ OH	+	Br
	A. The ra	te wo	uld incre	ase becaus	e S _N 2 reac	tions fav	our a polar aprotic	solve	ent
	B. The ra	te wo	uld decre	ease becaus	se S _N 1 read	ctions fav	our a polar protic	solve	nt
	C. The ra	te wo	uld not b	e affected	by the cha	nge in so	olvent.		
	D. The po	otentia	al change	cannot be	predicted				
1.19	Which of	the fo	ollowing	anions is th	ne best lea	ving grou	ıp?		
		A)	NH_2^-	B) (CIT C	C) CH	(3 D) OH	-	
	A. A								
	В. В								
	C. C								
	D. D								
1.20	Which of	the fo	ollowing	is the stron	igest nucle	ophile ir	polar protic solve	nts?	
		A)	F	B) CH	3O C)	HO ⁻	D) CH ₃ S ⁻		
	A. A								
	В. В								
	C. C								

1.21 Which of the following carbocations is the most stable?

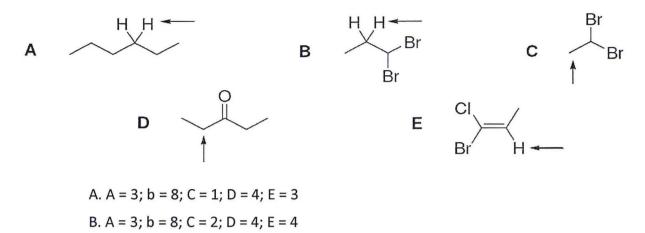


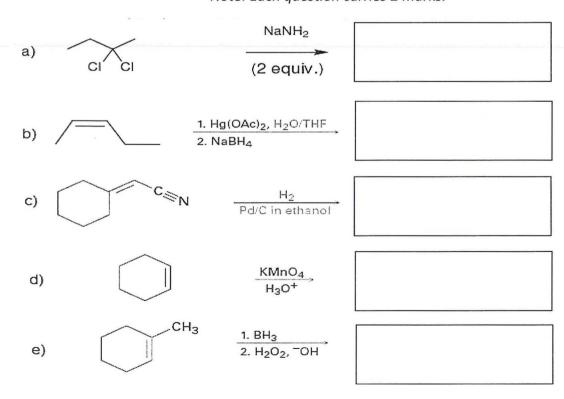
A. A


D. D


- B. B
- C. C
- D. D

1.22 Which alkyl halide (A-C) would give the following alkene (Y) as the only product in an elimination reaction?


- A. A
- B. B
- C. C
- D. A and B
- 1.23 What is the product of the following reaction?


- A. A
- B. B
- C. C
- D. D
- 1.24 Which of the following statements is (are) true about an E1 elimination reaction?
 - A. It is fastest with 3° Halides
 - B. The identity of the base affects the rate of reaction
 - C. A better leaving group increases the reaction rate
 - D. All of the above are true

1.25 How many peaks could theoretically be observed in the ¹H NMR signal(s) for each of the indicated atoms?

What is (are) the product(s) of the following reactions? Represent the products as skeletal structures and show the stereochemistry where necessary.

Note: Each question carries 2 marks.

Determine the reagents required to achieve the following transformation.

Note: Each question carries 2 marks.

QUESTION 4 [10]

Consider the following reaction below and answer the questions that follow.

- a. Draw a mechanism for this reaction using curved arrows. (2)
- b. Draw an energy level diagram and label the axes, starting material, product, Ea and ΔH° . Assume that the reaction is exothermic. (2)
- c. Draw the structure of the transition state. (1)
- d. What is the rate of the reaction? (2)
- e. What happens to the reaction if:
 - i. The leaving group is changed from Br⁻ to I⁻? (1)
 - ii. The solvent is changed from acetone to ethanol? (1)
 - iii. The concentration of both alkyl halide and ⁻CN is increased by a factor of five? (1)

QUESTION 5 [10]

Draw a stepwise, detailed mechanism for the following reaction. In order to receive full marks, show all the electron movement; draw all the intermediates and all the products.

Hint: The reaction produces more than one product

QUESTION 6 [4]

Classify each of the following transformations as either a substitution, elimination, addition or rearrangement reaction.

Note: Each question carries 1 mark.

a.
$$O$$

b. O

c. O

d. O

QUESTION 7 [6]

Use the NMR and IR spectral Table provided to identify the structure of one of the two isomers $\bf A$ or $\bf B$ with a molecular formula of $\bf C_9H_{10}O$ and corresponding to the spectral data below.

- a. Compound A: IR peak at 1742 cm⁻¹; ¹H NMR data (ppm) at 2.15 (singlet, 3 H), 3.70 (singlet, 2 H), and 7.20 (broad singlet, 5 H).
- b. Compound B: IR peak at 1688 cm⁻¹; ¹H NMR data (ppm) at 1.22 (triplet, 3 H), 2.98 (quartet, 2 H), and 7.28–7.95 (multiplet, 5 H).

END OF EXAM QUESTIONS

GOOD LUCK

¹H NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
С-H	0.9–2	C=C H	4.5–6
• RCH ₃ • R ₂ CH ₂ • R ₃ CH	~0.9 ~1.3 ~1.7	Н	6.5–8
Z C	1.5–2.5	R H	9–10
—C≡C−H	~2.5	R OH	10–12
Sp^3 Z Z = N, O, X	2.5–4	RO-H or R-N-H	1–5

Important IR Absorptions

1111	portant in Ausorptions	
Bond type	Approximate ⊽ (cm ⁻¹)	Intensity
O-H	3600-3200	strong, broad
N-H	3500–3200	medium
C-H	~3000	
 C_{sp²}-H 	3000–2850	strong
 C_{sp}²-H 	3150-3000	medium
 C_{sp}−H 	3300	medium
C≡C	2250	medium
C≡N	2250	medium
C=O	1800-1650 (often ~1700)	strong
C=C	1650	medium
	1600, 1500	medium

9.1

10

																		_		
helium 2	He	4.0026	10	Ne	20.180	argon	A	39.948	krypton 36	Ż	83.80	xenon 54	Xe	131.29	radon 86	2	[222]			
		Auseine	allionii 6	L	18.998	chlorine 17	ਹ	35.453	bromine 35	ğ	79.904	iodine 53		126.90	astatine 85	A	[210]			
		20000	12 8 8	0	15.999	sulfur 16	S	32.065	selenium 34	Se	78.96	tellurium 52	P	127.60	polonium 84	90	[503]			
		ngheadha	Lafoniii	2	14.007	phosphorus 15	2	30.974	arsenic 33	As	74.922	antimony 51	Sp	121.76	bismuth 83	<u> </u>	208.98			
		nothon	9	ပ	12.011	silicon 14	S	28.086	germanium 32	Ge	72.61	Fin 20	S	118.71	lead 82	P Q	207.2	ununquadium 114	Dnd	[588]
		acroq	2	00	10.811	aluminium 13	A	26.982	gallium 31	Ga	69.723	indium 49		114.82	thallium 81		204.38			
		L				l			zinc 30	Zn	62.39	cadmium 48	ဝ	112.41	mercury 80	P	200.59	ununbium 112	Jub	[277]
									copper 29	CC	63,546	silver 47	Ag	107.87	pio6	Au	196.97	unununium 111		[272]
																			Can	
																		_	Z	
																	_	-	E S	\dashv
																			<u>8</u>	
																			Sq	
											\dashv	_		-			-	0,	90	\dashv
								- 1	_										ž	
														_				2	<u></u>	
									v)								,	24	*	
		ryllin	4	3e	0.0122	gnesium 12	Mo	4.305	alcium 20	g	970.07	rontium 38	Š	37.62						[526]
drogen	I	+		-				-			\dashv			\dashv			_			_
'n		- =	•		9	S	Mann	25	od ———		35	2		86	8	_	1	fra	Rentmen	

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	viterbium
1 anthanida series	22	28	59	09	61	62	63	28	65	99	29	89	69	20
	٦	ပ္မ	٥	o Z	E	Sm	显	8	9	2	우	Ц	٣	Z
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
**Actinide series	88	06	91	92	93	94	92	96	6	86	66	100	101	102
	Ac	٢	Pa	>	Z	2	Am	CH	ਲ	ن	Es	٤	Z	2
	[227]	232.04	231.04	238.03	12371	[244]	[243]	12471	[247]	12511	12521	12571	12581	12591

Page 14 of 14